Basic equivalence relation for closure-input structures.
Function:
(defun closure-input-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (closure-inputp acl2::x) (closure-inputp acl2::y)))) (equal (closure-input-fix acl2::x) (closure-input-fix acl2::y)))
Theorem:
(defthm closure-input-equiv-is-an-equivalence (and (booleanp (closure-input-equiv x y)) (closure-input-equiv x x) (implies (closure-input-equiv x y) (closure-input-equiv y x)) (implies (and (closure-input-equiv x y) (closure-input-equiv y z)) (closure-input-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm closure-input-equiv-implies-equal-closure-input-fix-1 (implies (closure-input-equiv acl2::x x-equiv) (equal (closure-input-fix acl2::x) (closure-input-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm closure-input-fix-under-closure-input-equiv (closure-input-equiv (closure-input-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-closure-input-fix-1-forward-to-closure-input-equiv (implies (equal (closure-input-fix acl2::x) acl2::y) (closure-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-closure-input-fix-2-forward-to-closure-input-equiv (implies (equal acl2::x (closure-input-fix acl2::y)) (closure-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm closure-input-equiv-of-closure-input-fix-1-forward (implies (closure-input-equiv (closure-input-fix acl2::x) acl2::y) (closure-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm closure-input-equiv-of-closure-input-fix-2-forward (implies (closure-input-equiv acl2::x (closure-input-fix acl2::y)) (closure-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)