Lex
(lex-repetition-1*-instruction input) → (mv trees rest-input)
Function:
(defun lex-repetition-1*-instruction (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-repetition-1*-instruction)) (declare (ignorable __function__)) (b* (((mv tree-thing1 input-after-thing1) (lex-instruction input)) ((when (reserrp tree-thing1)) (mv (reserrf-push tree-thing1) (nat-list-fix input))) ((mv trees input-after-trees) (lex-repetition-*-instruction input-after-thing1))) (mv (cons tree-thing1 trees) input-after-trees))))
Theorem:
(defthm tree-list-resultp-of-lex-repetition-1*-instruction.trees (b* (((mv ?trees ?rest-input) (lex-repetition-1*-instruction input))) (abnf::tree-list-resultp trees)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-repetition-1*-instruction.rest-input (b* (((mv ?trees ?rest-input) (lex-repetition-1*-instruction input))) (nat-listp rest-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-repetition-1*-instruction-<= (b* (((mv ?trees ?rest-input) (lex-repetition-1*-instruction input))) (<= (len rest-input) (len input))) :rule-classes :linear)
Theorem:
(defthm len-of-lex-repetition-1*-instruction-< (b* (((mv ?trees ?rest-input) (lex-repetition-1*-instruction input))) (implies (not (reserrp trees)) (< (len rest-input) (len input)))) :rule-classes :linear)
Theorem:
(defthm lex-repetition-1*-instruction-of-nat-list-fix-input (equal (lex-repetition-1*-instruction (nat-list-fix input)) (lex-repetition-1*-instruction input)))
Theorem:
(defthm lex-repetition-1*-instruction-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-repetition-1*-instruction input) (lex-repetition-1*-instruction input-equiv))) :rule-classes :congruence)