Lex
(lex-repetition-1*-tuple input) → (mv trees rest-input)
Function:
(defun lex-repetition-1*-tuple (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-repetition-1*-tuple)) (declare (ignorable __function__)) (b* (((mv tree-1-tuple input-after-1) (lex-tuple input)) ((when (reserrp tree-1-tuple)) (mv tree-1-tuple (nat-list-fix input))) ((mv trees-rest-tuple input-after-rest) (lex-repetition-*-tuple input-after-1)) ((when (reserrp trees-rest-tuple)) (mv (reserrf "1*tuple problem") (nat-list-fix input)))) (mv (cons tree-1-tuple trees-rest-tuple) input-after-rest))))
Theorem:
(defthm tree-list-resultp-of-lex-repetition-1*-tuple.trees (b* (((mv ?trees ?rest-input) (lex-repetition-1*-tuple input))) (abnf::tree-list-resultp trees)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-repetition-1*-tuple.rest-input (b* (((mv ?trees ?rest-input) (lex-repetition-1*-tuple input))) (nat-listp rest-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-1*-tuple-< (b* (((mv ?trees ?rest-input) (lex-repetition-1*-tuple input))) (implies (not (reserrp trees)) (< (len rest-input) (len input)))) :rule-classes :linear)
Theorem:
(defthm lex-repetition-1*-tuple-of-nat-list-fix-input (equal (lex-repetition-1*-tuple (nat-list-fix input)) (lex-repetition-1*-tuple input)))
Theorem:
(defthm lex-repetition-1*-tuple-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-repetition-1*-tuple input) (lex-repetition-1*-tuple input-equiv))) :rule-classes :congruence)