Fixing function for value-type structures.
(value-type-fix x) → new-x
Function:
(defun value-type-fix$inline (x) (declare (xargs :guard (value-typep x))) (let ((__function__ 'value-type-fix)) (declare (ignorable __function__)) (mbe :logic (case (value-type-kind x) (:plaintext (b* ((type (plaintext-type-fix (std::da-nth 0 (cdr x)))) (vis (visibility-fix (std::da-nth 1 (cdr x))))) (cons :plaintext (list type vis)))) (:record (b* ((name (identifier-fix (std::da-nth 0 (cdr x))))) (cons :record (list name)))) (:extrecord (b* ((loc (locator-fix (std::da-nth 0 (cdr x))))) (cons :extrecord (list loc))))) :exec x)))
Theorem:
(defthm value-typep-of-value-type-fix (b* ((new-x (value-type-fix$inline x))) (value-typep new-x)) :rule-classes :rewrite)
Theorem:
(defthm value-type-fix-when-value-typep (implies (value-typep x) (equal (value-type-fix x) x)))
Function:
(defun value-type-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (value-typep acl2::x) (value-typep acl2::y)))) (equal (value-type-fix acl2::x) (value-type-fix acl2::y)))
Theorem:
(defthm value-type-equiv-is-an-equivalence (and (booleanp (value-type-equiv x y)) (value-type-equiv x x) (implies (value-type-equiv x y) (value-type-equiv y x)) (implies (and (value-type-equiv x y) (value-type-equiv y z)) (value-type-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm value-type-equiv-implies-equal-value-type-fix-1 (implies (value-type-equiv acl2::x x-equiv) (equal (value-type-fix acl2::x) (value-type-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm value-type-fix-under-value-type-equiv (value-type-equiv (value-type-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-value-type-fix-1-forward-to-value-type-equiv (implies (equal (value-type-fix acl2::x) acl2::y) (value-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-value-type-fix-2-forward-to-value-type-equiv (implies (equal acl2::x (value-type-fix acl2::y)) (value-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm value-type-equiv-of-value-type-fix-1-forward (implies (value-type-equiv (value-type-fix acl2::x) acl2::y) (value-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm value-type-equiv-of-value-type-fix-2-forward (implies (value-type-equiv acl2::x (value-type-fix acl2::y)) (value-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm value-type-kind$inline-of-value-type-fix-x (equal (value-type-kind$inline (value-type-fix x)) (value-type-kind$inline x)))
Theorem:
(defthm value-type-kind$inline-value-type-equiv-congruence-on-x (implies (value-type-equiv x x-equiv) (equal (value-type-kind$inline x) (value-type-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-value-type-fix (consp (value-type-fix x)) :rule-classes :type-prescription)