Recognizer for amb?-expr/tyname structures.
(amb?-expr/tyname-p x) → *
Function:
(defun amb?-expr/tyname-p (x) (declare (xargs :guard t)) (and (consp x) (cond ((or (atom x) (eq (car x) :expr)) (and (b* ((expr (cdr x))) (exprp expr)))) ((eq (car x) :tyname) (and (b* ((tyname (cdr x))) (tynamep tyname)))) (t (and (eq (car x) :ambig) (and) (b* ((expr/tyname (cdr x))) (amb-expr/tyname-p expr/tyname)))))))
Theorem:
(defthm consp-when-amb?-expr/tyname-p (implies (amb?-expr/tyname-p x) (consp x)) :rule-classes :compound-recognizer)