Fixing function for header-name structures.
(header-name-fix x) → new-x
Function:
(defun header-name-fix$inline (x) (declare (xargs :guard (header-namep x))) (mbe :logic (case (header-name-kind x) (:angles (b* ((chars (h-char-list-fix (cdr x)))) (cons :angles chars))) (:quotes (b* ((chars (q-char-list-fix (cdr x)))) (cons :quotes chars)))) :exec x))
Theorem:
(defthm header-namep-of-header-name-fix (b* ((new-x (header-name-fix$inline x))) (header-namep new-x)) :rule-classes :rewrite)
Theorem:
(defthm header-name-fix-when-header-namep (implies (header-namep x) (equal (header-name-fix x) x)))
Function:
(defun header-name-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (header-namep acl2::x) (header-namep acl2::y)))) (equal (header-name-fix acl2::x) (header-name-fix acl2::y)))
Theorem:
(defthm header-name-equiv-is-an-equivalence (and (booleanp (header-name-equiv x y)) (header-name-equiv x x) (implies (header-name-equiv x y) (header-name-equiv y x)) (implies (and (header-name-equiv x y) (header-name-equiv y z)) (header-name-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm header-name-equiv-implies-equal-header-name-fix-1 (implies (header-name-equiv acl2::x x-equiv) (equal (header-name-fix acl2::x) (header-name-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm header-name-fix-under-header-name-equiv (header-name-equiv (header-name-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-header-name-fix-1-forward-to-header-name-equiv (implies (equal (header-name-fix acl2::x) acl2::y) (header-name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-header-name-fix-2-forward-to-header-name-equiv (implies (equal acl2::x (header-name-fix acl2::y)) (header-name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm header-name-equiv-of-header-name-fix-1-forward (implies (header-name-equiv (header-name-fix acl2::x) acl2::y) (header-name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm header-name-equiv-of-header-name-fix-2-forward (implies (header-name-equiv acl2::x (header-name-fix acl2::y)) (header-name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm header-name-kind$inline-of-header-name-fix-x (equal (header-name-kind$inline (header-name-fix x)) (header-name-kind$inline x)))
Theorem:
(defthm header-name-kind$inline-header-name-equiv-congruence-on-x (implies (header-name-equiv x x-equiv) (equal (header-name-kind$inline x) (header-name-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-header-name-fix (consp (header-name-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm header-name-fix$inline-of-header-name-fix-x (equal (header-name-fix$inline (header-name-fix x)) (header-name-fix$inline x)))
Theorem:
(defthm header-name-fix$inline-header-name-equiv-congruence-on-x (implies (header-name-equiv x x-equiv) (equal (header-name-fix$inline x) (header-name-fix$inline x-equiv))) :rule-classes :congruence)