Fixing function for macro-info structures.
(macro-info-fix x) → new-x
Function:
(defun macro-info-fix$inline (x) (declare (xargs :guard (macro-infop x))) (mbe :logic (case (macro-info-kind x) (:object (b* ((replace (plexeme-list-fix (std::da-nth 0 (cdr x))))) (let ((replace (if (plexeme-list-token/space-p replace) replace nil))) (cons :object (list replace))))) (:function (b* ((params (ident-list-fix (std::da-nth 0 (cdr x)))) (ellipsis (bool-fix (std::da-nth 1 (cdr x)))) (replace (plexeme-list-fix (std::da-nth 2 (cdr x))))) (let ((replace (if (plexeme-list-token/space-p replace) replace nil))) (cons :function (list params ellipsis replace)))))) :exec x))
Theorem:
(defthm macro-infop-of-macro-info-fix (b* ((new-x (macro-info-fix$inline x))) (macro-infop new-x)) :rule-classes :rewrite)
Theorem:
(defthm macro-info-fix-when-macro-infop (implies (macro-infop x) (equal (macro-info-fix x) x)))
Function:
(defun macro-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (macro-infop acl2::x) (macro-infop acl2::y)))) (equal (macro-info-fix acl2::x) (macro-info-fix acl2::y)))
Theorem:
(defthm macro-info-equiv-is-an-equivalence (and (booleanp (macro-info-equiv x y)) (macro-info-equiv x x) (implies (macro-info-equiv x y) (macro-info-equiv y x)) (implies (and (macro-info-equiv x y) (macro-info-equiv y z)) (macro-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm macro-info-equiv-implies-equal-macro-info-fix-1 (implies (macro-info-equiv acl2::x x-equiv) (equal (macro-info-fix acl2::x) (macro-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm macro-info-fix-under-macro-info-equiv (macro-info-equiv (macro-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-macro-info-fix-1-forward-to-macro-info-equiv (implies (equal (macro-info-fix acl2::x) acl2::y) (macro-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-macro-info-fix-2-forward-to-macro-info-equiv (implies (equal acl2::x (macro-info-fix acl2::y)) (macro-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm macro-info-equiv-of-macro-info-fix-1-forward (implies (macro-info-equiv (macro-info-fix acl2::x) acl2::y) (macro-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm macro-info-equiv-of-macro-info-fix-2-forward (implies (macro-info-equiv acl2::x (macro-info-fix acl2::y)) (macro-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm macro-info-kind$inline-of-macro-info-fix-x (equal (macro-info-kind$inline (macro-info-fix x)) (macro-info-kind$inline x)))
Theorem:
(defthm macro-info-kind$inline-macro-info-equiv-congruence-on-x (implies (macro-info-equiv x x-equiv) (equal (macro-info-kind$inline x) (macro-info-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-macro-info-fix (consp (macro-info-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm macro-info-fix$inline-of-macro-info-fix-x (equal (macro-info-fix$inline (macro-info-fix x)) (macro-info-fix$inline x)))
Theorem:
(defthm macro-info-fix$inline-macro-info-equiv-congruence-on-x (implies (macro-info-equiv x x-equiv) (equal (macro-info-fix$inline x) (macro-info-fix$inline x-equiv))) :rule-classes :congruence)