(ppstate->lexemes-length ppstate) → length
Function:
(defun ppstate->lexemes-length (ppstate) (declare (xargs :stobjs (ppstate))) (declare (xargs :guard t)) (mbe :logic (if (ppstatep ppstate) (raw-ppstate->lexemes-length ppstate) 1) :exec (raw-ppstate->lexemes-length ppstate)))
Theorem:
(defthm natp-of-ppstate->lexemes-length (b* ((length (ppstate->lexemes-length ppstate))) (natp length)) :rule-classes :rewrite)
Theorem:
(defthm ppstate->lexemes-length-of-ppstate-fix-ppstate (equal (ppstate->lexemes-length (ppstate-fix ppstate)) (ppstate->lexemes-length ppstate)))
Theorem:
(defthm ppstate->lexemes-length-ppstate-equiv-congruence-on-ppstate (implies (ppstate-equiv ppstate ppstate-equiv) (equal (ppstate->lexemes-length ppstate) (ppstate->lexemes-length ppstate-equiv))) :rule-classes :congruence)