(update-ppstate->chars-read chars-read ppstate) → ppstate
Function:
(defun update-ppstate->chars-read (chars-read ppstate) (declare (xargs :stobjs (ppstate))) (declare (xargs :guard (natp chars-read))) (b* ((ppstate (ppstate-fix ppstate))) (raw-update-ppstate->chars-read (nfix chars-read) ppstate)))
Theorem:
(defthm ppstatep-of-update-ppstate->chars-read (b* ((ppstate (update-ppstate->chars-read chars-read ppstate))) (ppstatep ppstate)) :rule-classes :rewrite)
Theorem:
(defthm update-ppstate->chars-read-of-nfix-chars-read (equal (update-ppstate->chars-read (nfix chars-read) ppstate) (update-ppstate->chars-read chars-read ppstate)))
Theorem:
(defthm update-ppstate->chars-read-nat-equiv-congruence-on-chars-read (implies (acl2::nat-equiv chars-read chars-read-equiv) (equal (update-ppstate->chars-read chars-read ppstate) (update-ppstate->chars-read chars-read-equiv ppstate))) :rule-classes :congruence)
Theorem:
(defthm update-ppstate->chars-read-of-ppstate-fix-ppstate (equal (update-ppstate->chars-read chars-read (ppstate-fix ppstate)) (update-ppstate->chars-read chars-read ppstate)))
Theorem:
(defthm update-ppstate->chars-read-ppstate-equiv-congruence-on-ppstate (implies (ppstate-equiv ppstate ppstate-equiv) (equal (update-ppstate->chars-read chars-read ppstate) (update-ppstate->chars-read chars-read ppstate-equiv))) :rule-classes :congruence)