Fixing function for char+short+int+long+llong+bool-format structures.
(char+short+int+long+llong+bool-format-fix x) → new-x
Function:
(defun char+short+int+long+llong+bool-format-fix$inline (x) (declare (xargs :guard (char+short+int+long+llong+bool-formatp x))) (mbe :logic (b* ((uchar (uchar-format-fix (cdr (std::da-nth 0 x)))) (schar (schar-format-fix (cdr (std::da-nth 1 x)))) (char (char-format-fix (cdr (std::da-nth 2 x)))) (short (integer-format-fix (cdr (std::da-nth 3 x)))) (int (integer-format-fix (cdr (std::da-nth 4 x)))) (long (integer-format-fix (cdr (std::da-nth 5 x)))) (llong (integer-format-fix (cdr (std::da-nth 6 x)))) (bool (bool-format-fix (cdr (std::da-nth 7 x))))) (list (cons 'uchar uchar) (cons 'schar schar) (cons 'char char) (cons 'short short) (cons 'int int) (cons 'long long) (cons 'llong llong) (cons 'bool bool))) :exec x))
Theorem:
(defthm char+short+int+long+llong+bool-formatp-of-char+short+int+long+llong+bool-format-fix (b* ((new-x (char+short+int+long+llong+bool-format-fix$inline x))) (char+short+int+long+llong+bool-formatp new-x)) :rule-classes :rewrite)
Theorem:
(defthm char+short+int+long+llong+bool-format-fix-when-char+short+int+long+llong+bool-formatp (implies (char+short+int+long+llong+bool-formatp x) (equal (char+short+int+long+llong+bool-format-fix x) x)))
Function:
(defun char+short+int+long+llong+bool-format-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (char+short+int+long+llong+bool-formatp acl2::x) (char+short+int+long+llong+bool-formatp acl2::y)))) (equal (char+short+int+long+llong+bool-format-fix acl2::x) (char+short+int+long+llong+bool-format-fix acl2::y)))
Theorem:
(defthm char+short+int+long+llong+bool-format-equiv-is-an-equivalence (and (booleanp (char+short+int+long+llong+bool-format-equiv x y)) (char+short+int+long+llong+bool-format-equiv x x) (implies (char+short+int+long+llong+bool-format-equiv x y) (char+short+int+long+llong+bool-format-equiv y x)) (implies (and (char+short+int+long+llong+bool-format-equiv x y) (char+short+int+long+llong+bool-format-equiv y z)) (char+short+int+long+llong+bool-format-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm char+short+int+long+llong+bool-format-equiv-implies-equal-char+short+int+long+llong+bool-format-fix-1 (implies (char+short+int+long+llong+bool-format-equiv acl2::x x-equiv) (equal (char+short+int+long+llong+bool-format-fix acl2::x) (char+short+int+long+llong+bool-format-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm char+short+int+long+llong+bool-format-fix-under-char+short+int+long+llong+bool-format-equiv (char+short+int+long+llong+bool-format-equiv (char+short+int+long+llong+bool-format-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-char+short+int+long+llong+bool-format-fix-1-forward-to-char+short+int+long+llong+bool-format-equiv (implies (equal (char+short+int+long+llong+bool-format-fix acl2::x) acl2::y) (char+short+int+long+llong+bool-format-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-char+short+int+long+llong+bool-format-fix-2-forward-to-char+short+int+long+llong+bool-format-equiv (implies (equal acl2::x (char+short+int+long+llong+bool-format-fix acl2::y)) (char+short+int+long+llong+bool-format-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm char+short+int+long+llong+bool-format-equiv-of-char+short+int+long+llong+bool-format-fix-1-forward (implies (char+short+int+long+llong+bool-format-equiv (char+short+int+long+llong+bool-format-fix acl2::x) acl2::y) (char+short+int+long+llong+bool-format-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm char+short+int+long+llong+bool-format-equiv-of-char+short+int+long+llong+bool-format-fix-2-forward (implies (char+short+int+long+llong+bool-format-equiv acl2::x (char+short+int+long+llong+bool-format-fix acl2::y)) (char+short+int+long+llong+bool-format-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm char+short+int+long+llong+bool-format-fix$inline-of-char+short+int+long+llong+bool-format-fix-x (equal (char+short+int+long+llong+bool-format-fix$inline (char+short+int+long+llong+bool-format-fix x)) (char+short+int+long+llong+bool-format-fix$inline x)))
Theorem:
(defthm char+short+int+long+llong+bool-format-fix$inline-char+short+int+long+llong+bool-format-equiv-congruence-on-x (implies (char+short+int+long+llong+bool-format-equiv x x-equiv) (equal (char+short+int+long+llong+bool-format-fix$inline x) (char+short+int+long+llong+bool-format-fix$inline x-equiv))) :rule-classes :congruence)