• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
          • Std/alists
          • Fast-alists
          • Alistp
          • Misc/records
          • Assoc
          • Remove-assocs
          • Symbol-alistp
          • Rassoc
          • Remove-assoc
          • Depgraph
            • Toposort
            • Transdeps
            • Invert
            • Mergesort-alist-values
            • Alist-values-are-sets-p
              • Topologically-ordered-p
              • Dependency-chain-p
            • Remove1-assoc
            • Alist-map-vals
            • Alist-map-keys
            • Put-assoc
            • Strip-cars
            • Pairlis$
            • Strip-cdrs
            • Sublis
            • Acons
            • Eqlable-alistp
            • Assoc-string-equal
            • Alist-to-doublets
            • Character-alistp
            • String-alistp
            • Alist-keys-subsetp
            • R-symbol-alistp
            • R-eqlable-alistp
            • Pairlis
            • Pairlis-x2
            • Pairlis-x1
            • Delete-assoc
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Depgraph

    Alist-values-are-sets-p

    Recognizer for alists whose every value is an ordered set.

    Signature
    (alist-values-are-sets-p x) → *

    Definitions and Theorems

    Function: alist-values-are-sets-p

    (defun alist-values-are-sets-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'alist-values-are-sets-p))
        (declare (ignorable __function__))
        (b* (((when (atom x)) t)
             ((when (atom (car x)))
              (alist-values-are-sets-p (cdr x))))
          (and (setp (cdar x))
               (alist-values-are-sets-p (cdr x))))))

    Theorem: alist-values-are-sets-p-when-atom

    (defthm alist-values-are-sets-p-when-atom
      (implies (not (consp x))
               (equal (alist-values-are-sets-p x) t)))

    Theorem: alist-values-are-sets-p-of-cons

    (defthm alist-values-are-sets-p-of-cons
      (equal (alist-values-are-sets-p (cons a x))
             (and (setp (cdr a))
                  (alist-values-are-sets-p x))))

    Theorem: setp-of-lookup-when-alist-values-are-sets-p

    (defthm setp-of-lookup-when-alist-values-are-sets-p
      (implies (alist-values-are-sets-p x)
               (setp (cdr (hons-assoc-equal a x)))))

    Theorem: alist-values-are-sets-p-of-hons-shrink-alist

    (defthm alist-values-are-sets-p-of-hons-shrink-alist
      (implies (and (alist-values-are-sets-p x)
                    (alist-values-are-sets-p ans))
               (alist-values-are-sets-p (hons-shrink-alist x ans))))

    Theorem: alist-values-are-sets-p-of-mergesort-alist-values

    (defthm alist-values-are-sets-p-of-mergesort-alist-values
      (alist-values-are-sets-p (mergesort-alist-values x)))

    Theorem: list-equiv-implies-equal-alist-values-are-sets-p-1

    (defthm list-equiv-implies-equal-alist-values-are-sets-p-1
      (implies (acl2::list-equiv x x-equiv)
               (equal (alist-values-are-sets-p x)
                      (alist-values-are-sets-p x-equiv)))
      :rule-classes (:congruence))