Abstract a
(abs-*-comma-struct-component-declaration trees) → ret-comps
Function:
(defun abs-*-comma-struct-component-declaration (trees) (declare (xargs :guard (abnf::tree-listp trees))) (let ((__function__ 'abs-*-comma-struct-component-declaration)) (declare (ignorable __function__)) (b* (((when (endp trees)) nil) ((okf comp) (abs-comma-struct-component-declaration (car trees))) ((okf comps) (abs-*-comma-struct-component-declaration (cdr trees)))) (cons comp comps))))
Theorem:
(defthm compdecl-list-resultp-of-abs-*-comma-struct-component-declaration (b* ((ret-comps (abs-*-comma-struct-component-declaration trees))) (compdecl-list-resultp ret-comps)) :rule-classes :rewrite)
Theorem:
(defthm compdecl-listp-of-abs-*-comma-struct-component-declaration (b* ((?ret-comps (abs-*-comma-struct-component-declaration trees))) (implies (not (reserrp ret-comps)) (compdecl-listp ret-comps))))
Theorem:
(defthm abs-*-comma-struct-component-declaration-of-tree-list-fix-trees (equal (abs-*-comma-struct-component-declaration (abnf::tree-list-fix trees)) (abs-*-comma-struct-component-declaration trees)))
Theorem:
(defthm abs-*-comma-struct-component-declaration-tree-list-equiv-congruence-on-trees (implies (abnf::tree-list-equiv trees trees-equiv) (equal (abs-*-comma-struct-component-declaration trees) (abs-*-comma-struct-component-declaration trees-equiv))) :rule-classes :congruence)