Basic equivalence relation for chars+exprs structures.
Function:
(defun chars+exprs-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (chars+exprs-p acl2::x) (chars+exprs-p acl2::y)))) (equal (chars+exprs-fix acl2::x) (chars+exprs-fix acl2::y)))
Theorem:
(defthm chars+exprs-equiv-is-an-equivalence (and (booleanp (chars+exprs-equiv x y)) (chars+exprs-equiv x x) (implies (chars+exprs-equiv x y) (chars+exprs-equiv y x)) (implies (and (chars+exprs-equiv x y) (chars+exprs-equiv y z)) (chars+exprs-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm chars+exprs-equiv-implies-equal-chars+exprs-fix-1 (implies (chars+exprs-equiv acl2::x x-equiv) (equal (chars+exprs-fix acl2::x) (chars+exprs-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm chars+exprs-fix-under-chars+exprs-equiv (chars+exprs-equiv (chars+exprs-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-chars+exprs-fix-1-forward-to-chars+exprs-equiv (implies (equal (chars+exprs-fix acl2::x) acl2::y) (chars+exprs-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-chars+exprs-fix-2-forward-to-chars+exprs-equiv (implies (equal acl2::x (chars+exprs-fix acl2::y)) (chars+exprs-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm chars+exprs-equiv-of-chars+exprs-fix-1-forward (implies (chars+exprs-equiv (chars+exprs-fix acl2::x) acl2::y) (chars+exprs-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm chars+exprs-equiv-of-chars+exprs-fix-2-forward (implies (chars+exprs-equiv acl2::x (chars+exprs-fix acl2::y)) (chars+exprs-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)