Fixing function for function-dinfo structures.
(function-dinfo-fix x) → new-x
Function:
(defun function-dinfo-fix$inline (x) (declare (xargs :guard (function-dinfop x))) (let ((__function__ 'function-dinfo-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((inputs (funparam-list-fix (cdr (std::da-nth 0 x)))) (output (type-fix (cdr (std::da-nth 1 x)))) (body (statement-list-fix (cdr (std::da-nth 2 x))))) (list (cons 'inputs inputs) (cons 'output output) (cons 'body body))) :exec x)))
Theorem:
(defthm function-dinfop-of-function-dinfo-fix (b* ((new-x (function-dinfo-fix$inline x))) (function-dinfop new-x)) :rule-classes :rewrite)
Theorem:
(defthm function-dinfo-fix-when-function-dinfop (implies (function-dinfop x) (equal (function-dinfo-fix x) x)))
Function:
(defun function-dinfo-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (function-dinfop acl2::x) (function-dinfop acl2::y)))) (equal (function-dinfo-fix acl2::x) (function-dinfo-fix acl2::y)))
Theorem:
(defthm function-dinfo-equiv-is-an-equivalence (and (booleanp (function-dinfo-equiv x y)) (function-dinfo-equiv x x) (implies (function-dinfo-equiv x y) (function-dinfo-equiv y x)) (implies (and (function-dinfo-equiv x y) (function-dinfo-equiv y z)) (function-dinfo-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm function-dinfo-equiv-implies-equal-function-dinfo-fix-1 (implies (function-dinfo-equiv acl2::x x-equiv) (equal (function-dinfo-fix acl2::x) (function-dinfo-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm function-dinfo-fix-under-function-dinfo-equiv (function-dinfo-equiv (function-dinfo-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-function-dinfo-fix-1-forward-to-function-dinfo-equiv (implies (equal (function-dinfo-fix acl2::x) acl2::y) (function-dinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-function-dinfo-fix-2-forward-to-function-dinfo-equiv (implies (equal acl2::x (function-dinfo-fix acl2::y)) (function-dinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm function-dinfo-equiv-of-function-dinfo-fix-1-forward (implies (function-dinfo-equiv (function-dinfo-fix acl2::x) acl2::y) (function-dinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm function-dinfo-equiv-of-function-dinfo-fix-2-forward (implies (function-dinfo-equiv acl2::x (function-dinfo-fix acl2::y)) (function-dinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)