Fixing function for ident-sinfo structures.
(ident-sinfo-fix x) → new-x
Function:
(defun ident-sinfo-fix$inline (x) (declare (xargs :guard (ident-sinfop x))) (let ((__function__ 'ident-sinfo-fix)) (declare (ignorable __function__)) (mbe :logic (case (ident-sinfo-kind x) (:var/const (b* ((get (var/const-sinfo-fix (std::da-nth 0 (cdr x))))) (cons :var/const (list get)))) (:function (b* ((get (function-sinfo-fix (std::da-nth 0 (cdr x))))) (cons :function (list get)))) (:struct (b* ((get (struct-sinfo-fix (std::da-nth 0 (cdr x))))) (cons :struct (list get))))) :exec x)))
Theorem:
(defthm ident-sinfop-of-ident-sinfo-fix (b* ((new-x (ident-sinfo-fix$inline x))) (ident-sinfop new-x)) :rule-classes :rewrite)
Theorem:
(defthm ident-sinfo-fix-when-ident-sinfop (implies (ident-sinfop x) (equal (ident-sinfo-fix x) x)))
Function:
(defun ident-sinfo-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ident-sinfop acl2::x) (ident-sinfop acl2::y)))) (equal (ident-sinfo-fix acl2::x) (ident-sinfo-fix acl2::y)))
Theorem:
(defthm ident-sinfo-equiv-is-an-equivalence (and (booleanp (ident-sinfo-equiv x y)) (ident-sinfo-equiv x x) (implies (ident-sinfo-equiv x y) (ident-sinfo-equiv y x)) (implies (and (ident-sinfo-equiv x y) (ident-sinfo-equiv y z)) (ident-sinfo-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ident-sinfo-equiv-implies-equal-ident-sinfo-fix-1 (implies (ident-sinfo-equiv acl2::x x-equiv) (equal (ident-sinfo-fix acl2::x) (ident-sinfo-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ident-sinfo-fix-under-ident-sinfo-equiv (ident-sinfo-equiv (ident-sinfo-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ident-sinfo-fix-1-forward-to-ident-sinfo-equiv (implies (equal (ident-sinfo-fix acl2::x) acl2::y) (ident-sinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ident-sinfo-fix-2-forward-to-ident-sinfo-equiv (implies (equal acl2::x (ident-sinfo-fix acl2::y)) (ident-sinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-sinfo-equiv-of-ident-sinfo-fix-1-forward (implies (ident-sinfo-equiv (ident-sinfo-fix acl2::x) acl2::y) (ident-sinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-sinfo-equiv-of-ident-sinfo-fix-2-forward (implies (ident-sinfo-equiv acl2::x (ident-sinfo-fix acl2::y)) (ident-sinfo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-sinfo-kind$inline-of-ident-sinfo-fix-x (equal (ident-sinfo-kind$inline (ident-sinfo-fix x)) (ident-sinfo-kind$inline x)))
Theorem:
(defthm ident-sinfo-kind$inline-ident-sinfo-equiv-congruence-on-x (implies (ident-sinfo-equiv x x-equiv) (equal (ident-sinfo-kind$inline x) (ident-sinfo-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-ident-sinfo-fix (consp (ident-sinfo-fix x)) :rule-classes :type-prescription)