(svtv-probealist-to-lhprobe-map x namemap) → map
Function:
(defun svtv-probealist-to-lhprobe-map (x namemap) (declare (xargs :guard (and (svtv-probealist-p x) (svtv-name-lhs-map-p namemap)))) (let ((__function__ 'svtv-probealist-to-lhprobe-map)) (declare (ignorable __function__)) (if (atom x) nil (if (mbt (consp (car x))) (cons (cons (svar-fix (caar x)) (svtv-probe-to-lhprobe (cdar x) namemap)) (svtv-probealist-to-lhprobe-map (cdr x) namemap)) (svtv-probealist-to-lhprobe-map (cdr x) namemap)))))
Theorem:
(defthm lhprobe-map-p-of-svtv-probealist-to-lhprobe-map (b* ((map (svtv-probealist-to-lhprobe-map x namemap))) (lhprobe-map-p map)) :rule-classes :rewrite)
Theorem:
(defthm svtv-probealist-to-lhprobe-map-of-svtv-probealist-fix-x (equal (svtv-probealist-to-lhprobe-map (svtv-probealist-fix x) namemap) (svtv-probealist-to-lhprobe-map x namemap)))
Theorem:
(defthm svtv-probealist-to-lhprobe-map-svtv-probealist-equiv-congruence-on-x (implies (svtv-probealist-equiv x x-equiv) (equal (svtv-probealist-to-lhprobe-map x namemap) (svtv-probealist-to-lhprobe-map x-equiv namemap))) :rule-classes :congruence)
Theorem:
(defthm svtv-probealist-to-lhprobe-map-of-svtv-name-lhs-map-fix-namemap (equal (svtv-probealist-to-lhprobe-map x (svtv-name-lhs-map-fix namemap)) (svtv-probealist-to-lhprobe-map x namemap)))
Theorem:
(defthm svtv-probealist-to-lhprobe-map-svtv-name-lhs-map-equiv-congruence-on-namemap (implies (svtv-name-lhs-map-equiv namemap namemap-equiv) (equal (svtv-probealist-to-lhprobe-map x namemap) (svtv-probealist-to-lhprobe-map x namemap-equiv))) :rule-classes :congruence)