• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Ethereum
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
      • Zcash
      • Des
      • X86isa
      • Sha-2
      • Yul
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Axe
      • Poseidon
      • Where-do-i-place-my-book
      • Aleo
        • Aleobft
        • Aleovm
          • Circuits
          • Language
            • Grammar
            • Early-version
              • Abstract-syntax
                • Binary-op
                • Literal
                • Instruction
                • Hash-op
                • Literal-type
                • Operand
                • Unary-op
                • Identifier
                • Commit-op
                • Mapping
                • Function
                • Programdef
                • Finalize-type
                • Closure
                • Register-type
                • Finalizer
                • Value-type
                • Record-type
                • Command
                • Plaintext-type
                • Finalization-option
                • Visibility
                • Register
                • Reference
                • Programid
                • Locator
                • Finalization
                • Entry-type
                • Regaccess
                • Program
                • Interface-type
                • Ident+ptype
                • Ident+etype
                • Function-output
                • Finalize-output
                • Finalize-input
                • Closure-output
                • Closure-input
                • Assert-op
                • Function-input
                • Equal-op
                • Finalize-command
                • Ternary-op
                • Import
                • Ident+ptype-list
                • Operand-list
                • Ident+etype-list
                • Programdef-list
                • Instruction-list
                • Import-list
                • Identifier-list
                • Function-output-list
                • Function-input-list
                • Finalize-output-list
                • Finalize-input-list
                • Command-list
                • Closure-output-list
                • Closure-input-list
                  • Closure-input-list-fix
                    • Closure-input-list-equiv
                    • Closure-input-listp
                • Parser
                • Concrete-syntax
              • Concrete-syntax
          • Leo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Closure-input-list

    Closure-input-list-fix

    (closure-input-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (closure-input-list-fix x) → fty::newx
    Arguments
    x — Guard (closure-input-listp x).
    Returns
    fty::newx — Type (closure-input-listp fty::newx).

    In the logic, we apply closure-input-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: closure-input-list-fix$inline

    (defun closure-input-list-fix$inline (x)
      (declare (xargs :guard (closure-input-listp x)))
      (let ((__function__ 'closure-input-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (closure-input-fix (car x))
                     (closure-input-list-fix (cdr x))))
             :exec x)))

    Theorem: closure-input-listp-of-closure-input-list-fix

    (defthm closure-input-listp-of-closure-input-list-fix
      (b* ((fty::newx (closure-input-list-fix$inline x)))
        (closure-input-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: closure-input-list-fix-when-closure-input-listp

    (defthm closure-input-list-fix-when-closure-input-listp
      (implies (closure-input-listp x)
               (equal (closure-input-list-fix x) x)))

    Function: closure-input-list-equiv$inline

    (defun closure-input-list-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (closure-input-listp acl2::x)
                                  (closure-input-listp acl2::y))))
      (equal (closure-input-list-fix acl2::x)
             (closure-input-list-fix acl2::y)))

    Theorem: closure-input-list-equiv-is-an-equivalence

    (defthm closure-input-list-equiv-is-an-equivalence
      (and (booleanp (closure-input-list-equiv x y))
           (closure-input-list-equiv x x)
           (implies (closure-input-list-equiv x y)
                    (closure-input-list-equiv y x))
           (implies (and (closure-input-list-equiv x y)
                         (closure-input-list-equiv y z))
                    (closure-input-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: closure-input-list-equiv-implies-equal-closure-input-list-fix-1

    (defthm
        closure-input-list-equiv-implies-equal-closure-input-list-fix-1
      (implies (closure-input-list-equiv acl2::x x-equiv)
               (equal (closure-input-list-fix acl2::x)
                      (closure-input-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: closure-input-list-fix-under-closure-input-list-equiv

    (defthm closure-input-list-fix-under-closure-input-list-equiv
      (closure-input-list-equiv (closure-input-list-fix acl2::x)
                                acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-closure-input-list-fix-1-forward-to-closure-input-list-equiv

    (defthm
     equal-of-closure-input-list-fix-1-forward-to-closure-input-list-equiv
     (implies (equal (closure-input-list-fix acl2::x)
                     acl2::y)
              (closure-input-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-closure-input-list-fix-2-forward-to-closure-input-list-equiv

    (defthm
     equal-of-closure-input-list-fix-2-forward-to-closure-input-list-equiv
     (implies (equal acl2::x
                     (closure-input-list-fix acl2::y))
              (closure-input-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: closure-input-list-equiv-of-closure-input-list-fix-1-forward

    (defthm closure-input-list-equiv-of-closure-input-list-fix-1-forward
     (implies (closure-input-list-equiv (closure-input-list-fix acl2::x)
                                        acl2::y)
              (closure-input-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: closure-input-list-equiv-of-closure-input-list-fix-2-forward

    (defthm closure-input-list-equiv-of-closure-input-list-fix-2-forward
      (implies
           (closure-input-list-equiv acl2::x
                                     (closure-input-list-fix acl2::y))
           (closure-input-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-closure-input-list-fix-x-under-closure-input-equiv

    (defthm car-of-closure-input-list-fix-x-under-closure-input-equiv
      (closure-input-equiv (car (closure-input-list-fix acl2::x))
                           (car acl2::x)))

    Theorem: car-closure-input-list-equiv-congruence-on-x-under-closure-input-equiv

    (defthm
     car-closure-input-list-equiv-congruence-on-x-under-closure-input-equiv
     (implies (closure-input-list-equiv acl2::x x-equiv)
              (closure-input-equiv (car acl2::x)
                                   (car x-equiv)))
     :rule-classes :congruence)

    Theorem: cdr-of-closure-input-list-fix-x-under-closure-input-list-equiv

    (defthm
         cdr-of-closure-input-list-fix-x-under-closure-input-list-equiv
      (closure-input-list-equiv (cdr (closure-input-list-fix acl2::x))
                                (cdr acl2::x)))

    Theorem: cdr-closure-input-list-equiv-congruence-on-x-under-closure-input-list-equiv

    (defthm
     cdr-closure-input-list-equiv-congruence-on-x-under-closure-input-list-equiv
     (implies (closure-input-list-equiv acl2::x x-equiv)
              (closure-input-list-equiv (cdr acl2::x)
                                        (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-closure-input-fix-x-under-closure-input-list-equiv

    (defthm cons-of-closure-input-fix-x-under-closure-input-list-equiv
      (closure-input-list-equiv (cons (closure-input-fix acl2::x)
                                      acl2::y)
                                (cons acl2::x acl2::y)))

    Theorem: cons-closure-input-equiv-congruence-on-x-under-closure-input-list-equiv

    (defthm
     cons-closure-input-equiv-congruence-on-x-under-closure-input-list-equiv
     (implies (closure-input-equiv acl2::x x-equiv)
              (closure-input-list-equiv (cons acl2::x acl2::y)
                                        (cons x-equiv acl2::y)))
     :rule-classes :congruence)

    Theorem: cons-of-closure-input-list-fix-y-under-closure-input-list-equiv

    (defthm
        cons-of-closure-input-list-fix-y-under-closure-input-list-equiv
      (closure-input-list-equiv (cons acl2::x
                                      (closure-input-list-fix acl2::y))
                                (cons acl2::x acl2::y)))

    Theorem: cons-closure-input-list-equiv-congruence-on-y-under-closure-input-list-equiv

    (defthm
     cons-closure-input-list-equiv-congruence-on-y-under-closure-input-list-equiv
     (implies (closure-input-list-equiv acl2::y y-equiv)
              (closure-input-list-equiv (cons acl2::x acl2::y)
                                        (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-closure-input-list-fix

    (defthm consp-of-closure-input-list-fix
      (equal (consp (closure-input-list-fix acl2::x))
             (consp acl2::x)))

    Theorem: closure-input-list-fix-under-iff

    (defthm closure-input-list-fix-under-iff
      (iff (closure-input-list-fix acl2::x)
           (consp acl2::x)))

    Theorem: closure-input-list-fix-of-cons

    (defthm closure-input-list-fix-of-cons
      (equal (closure-input-list-fix (cons a x))
             (cons (closure-input-fix a)
                   (closure-input-list-fix x))))

    Theorem: len-of-closure-input-list-fix

    (defthm len-of-closure-input-list-fix
      (equal (len (closure-input-list-fix acl2::x))
             (len acl2::x)))

    Theorem: closure-input-list-fix-of-append

    (defthm closure-input-list-fix-of-append
      (equal (closure-input-list-fix (append std::a std::b))
             (append (closure-input-list-fix std::a)
                     (closure-input-list-fix std::b))))

    Theorem: closure-input-list-fix-of-repeat

    (defthm closure-input-list-fix-of-repeat
      (equal (closure-input-list-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (closure-input-fix acl2::x))))

    Theorem: list-equiv-refines-closure-input-list-equiv

    (defthm list-equiv-refines-closure-input-list-equiv
      (implies (list-equiv acl2::x acl2::y)
               (closure-input-list-equiv acl2::x acl2::y))
      :rule-classes :refinement)

    Theorem: nth-of-closure-input-list-fix

    (defthm nth-of-closure-input-list-fix
      (equal (nth acl2::n
                  (closure-input-list-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (closure-input-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: closure-input-list-equiv-implies-closure-input-list-equiv-append-1

    (defthm
     closure-input-list-equiv-implies-closure-input-list-equiv-append-1
     (implies (closure-input-list-equiv acl2::x fty::x-equiv)
              (closure-input-list-equiv (append acl2::x acl2::y)
                                        (append fty::x-equiv acl2::y)))
     :rule-classes (:congruence))

    Theorem: closure-input-list-equiv-implies-closure-input-list-equiv-append-2

    (defthm
     closure-input-list-equiv-implies-closure-input-list-equiv-append-2
     (implies (closure-input-list-equiv acl2::y fty::y-equiv)
              (closure-input-list-equiv (append acl2::x acl2::y)
                                        (append acl2::x fty::y-equiv)))
     :rule-classes (:congruence))

    Theorem: closure-input-list-equiv-implies-closure-input-list-equiv-nthcdr-2

    (defthm
     closure-input-list-equiv-implies-closure-input-list-equiv-nthcdr-2
     (implies (closure-input-list-equiv acl2::l l-equiv)
              (closure-input-list-equiv (nthcdr acl2::n acl2::l)
                                        (nthcdr acl2::n l-equiv)))
     :rule-classes (:congruence))

    Theorem: closure-input-list-equiv-implies-closure-input-list-equiv-take-2

    (defthm
       closure-input-list-equiv-implies-closure-input-list-equiv-take-2
      (implies (closure-input-list-equiv acl2::l l-equiv)
               (closure-input-list-equiv (take acl2::n acl2::l)
                                         (take acl2::n l-equiv)))
      :rule-classes (:congruence))