Fixing function for amb?-expr/tyname structures.
(amb?-expr/tyname-fix x) → new-x
Function:
(defun amb?-expr/tyname-fix$inline (x) (declare (xargs :guard (amb?-expr/tyname-p x))) (mbe :logic (case (amb?-expr/tyname-kind x) (:expr (b* ((expr (expr-fix (cdr x)))) (cons :expr expr))) (:tyname (b* ((tyname (tyname-fix (cdr x)))) (cons :tyname tyname))) (:ambig (b* ((expr/tyname (amb-expr/tyname-fix (cdr x)))) (cons :ambig expr/tyname)))) :exec x))
Theorem:
(defthm amb?-expr/tyname-p-of-amb?-expr/tyname-fix (b* ((new-x (amb?-expr/tyname-fix$inline x))) (amb?-expr/tyname-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm amb?-expr/tyname-fix-when-amb?-expr/tyname-p (implies (amb?-expr/tyname-p x) (equal (amb?-expr/tyname-fix x) x)))
Function:
(defun amb?-expr/tyname-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (amb?-expr/tyname-p acl2::x) (amb?-expr/tyname-p acl2::y)))) (equal (amb?-expr/tyname-fix acl2::x) (amb?-expr/tyname-fix acl2::y)))
Theorem:
(defthm amb?-expr/tyname-equiv-is-an-equivalence (and (booleanp (amb?-expr/tyname-equiv x y)) (amb?-expr/tyname-equiv x x) (implies (amb?-expr/tyname-equiv x y) (amb?-expr/tyname-equiv y x)) (implies (and (amb?-expr/tyname-equiv x y) (amb?-expr/tyname-equiv y z)) (amb?-expr/tyname-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm amb?-expr/tyname-equiv-implies-equal-amb?-expr/tyname-fix-1 (implies (amb?-expr/tyname-equiv acl2::x x-equiv) (equal (amb?-expr/tyname-fix acl2::x) (amb?-expr/tyname-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm amb?-expr/tyname-fix-under-amb?-expr/tyname-equiv (amb?-expr/tyname-equiv (amb?-expr/tyname-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-amb?-expr/tyname-fix-1-forward-to-amb?-expr/tyname-equiv (implies (equal (amb?-expr/tyname-fix acl2::x) acl2::y) (amb?-expr/tyname-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-amb?-expr/tyname-fix-2-forward-to-amb?-expr/tyname-equiv (implies (equal acl2::x (amb?-expr/tyname-fix acl2::y)) (amb?-expr/tyname-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm amb?-expr/tyname-equiv-of-amb?-expr/tyname-fix-1-forward (implies (amb?-expr/tyname-equiv (amb?-expr/tyname-fix acl2::x) acl2::y) (amb?-expr/tyname-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm amb?-expr/tyname-equiv-of-amb?-expr/tyname-fix-2-forward (implies (amb?-expr/tyname-equiv acl2::x (amb?-expr/tyname-fix acl2::y)) (amb?-expr/tyname-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm amb?-expr/tyname-kind$inline-of-amb?-expr/tyname-fix-x (equal (amb?-expr/tyname-kind$inline (amb?-expr/tyname-fix x)) (amb?-expr/tyname-kind$inline x)))
Theorem:
(defthm amb?-expr/tyname-kind$inline-amb?-expr/tyname-equiv-congruence-on-x (implies (amb?-expr/tyname-equiv x x-equiv) (equal (amb?-expr/tyname-kind$inline x) (amb?-expr/tyname-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-amb?-expr/tyname-fix (consp (amb?-expr/tyname-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm amb?-expr/tyname-fix$inline-of-amb?-expr/tyname-fix-x (equal (amb?-expr/tyname-fix$inline (amb?-expr/tyname-fix x)) (amb?-expr/tyname-fix$inline x)))
Theorem:
(defthm amb?-expr/tyname-fix$inline-amb?-expr/tyname-equiv-congruence-on-x (implies (amb?-expr/tyname-equiv x x-equiv) (equal (amb?-expr/tyname-fix$inline x) (amb?-expr/tyname-fix$inline x-equiv))) :rule-classes :congruence)